MOCK EXAM 10

MATHEMATICS Compulsory Part PAPER 1

Question-Answer Book

 $(2 \frac{1}{4} \text{ hours})$

This paper must be answered in English

INSTRUCTIONS

- 1. Write your name in the space provided on Page 1.
- 2. This paper consists of **THREE** sections, A(1), A(2), and B.
- 3. Attempt **ALL** questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Graph paper and supplementary answer sheets will be supplied on request. Write your name on the graph paper and supplementary answer sheets.
- 5. Unless otherwise specified, all working must be clearly shown.
- 6. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 7. The diagrams in this paper are not necessarily drawn to scale.

SECTION A(1) (35 marks)	
Simplify $(\alpha^2 \beta)(\alpha^3 \beta^{-2})^{-4}$ and express your answer with positive indices.	(3 marks)
	7)7
2 3	
. Make b the subject of the formula $\frac{2}{a} - \frac{3}{b} = 4$.	(3 marks)

2

(a)
$$x^2 + xy - 20y^2$$
,

(b)
$$x^2 + xy - 20y^2 - 8x + 32y$$

(3 marks)

- (a) Find the range of values of x which satisfy both $\frac{5-x}{3} > 2x + 1$ and $3x + 5 \ge 0$.
 - (b) Write down the greatest integer satisfying both inequalities in (a). (4 marks)

7.		a polar coordinate system, O is the pole. The polar coordinates of the points A and B are (
		d $(r, 165^{\circ})$ respectively, where r is a positive constant. It is given that the distance between is $6\sqrt{2}$. Find	1 A and
	(a)		
	(b)) r ,	
	(c)		marks)
	-		
		• • • • • • • • • • • • • • • • • • • •	

Figure 1

(a) Prove that $\triangle ACE \sim \triangle DBE$.

Answers written in the margins will not be marked.

- (b) It is given that AC = 40 cm, AE = 75 cm, CE = 85 cm and DE = 45 cm.
 - (i) Is $\triangle ACE$ a right-angled triangle? Explain your answer.

(ii) Find the area of the quadrilateral <i>ACDB</i> .	(5 marks

6

If a family is randomly selected from the families, then the probability that the selected family has less than 3 children is $\frac{3}{4}$.

- (a) Find k.
- (b) Write down the median, the inter-quartile range and the standard deviation of the distribution.

(5 marks)

SE	CTI	ON A(2) (35 marks)
10.		e cost of making a square handkerchief with a side of s cm is \$C. C is partly constant and partly ites as s^2 . When $s = 15$, $C = 65$ and when $s = 20$, $C = 100$.
	(a)	Find the cost of making a handkerchief with a side of 18 cm. (4 marks)
	(b)	Someone claims that the total cost of making two handkerchiefs with a side of 9 cm is higher than the cost of making a handkerchief with a side of 18 cm. Is the claim correct? Explain your answer. (2 marks)
		<u>) </u>

The mean of the distribution is 24.

- Find *a* and *b*. (3 marks)
- (b) Write down the greatest possible range of the distribution. (1 mark)
- (c) Find the least possible inter-quartile range of the distribution. (3 marks)

Answers written in the margins will not be marked.

12.	Let	$f(x) = 2x^3 + kx^2 + 5x + 4$, where k is a constant. It is given that $f(x) = (2x + 1)(ax^2 + bx + c)$,
	whe	ere a , b and c are constants.
	(a)	Find a , b and c . (4 marks)
	(b)	Someone claims that all the roots of the equation $f(x) = 0$ are real numbers. Do you agree?
		Explain your answer. (3 marks)
	-	
	_	

10

ne coordinates of the points E , F and G are $(-5, 6)$, $(2, 9)$ and $(7, -3)$ respectively asses through E and the centre of C is G .	The circle C
Find the equation of C .	(2 marks)
Prove that F lies inside C .	(2 marks)
Let H be a moving point on C . When H is closest from F ,	
(i) describe the geometric relationship between F , G and H ;	
(ii) find the equation of the straight line which passes through F and H .	(3 marks)
	 isses through E and the centre of C is G. i) Find the equation of C. i) Prove that F lies inside C. i) Let H be a moving point on C. When H is closest from F, (i) describe the geometric relationship between F, G and H;

14

Answers written in the margins will not be marked.

A queue is randomly formed by 6 boys and 4 girls.	
(a) How many different queues can be formed?	(1 mark)
(b) Find the probability that no girls are next to each other in the queue.	(3 marks
	7) 7

16

(3 marks)

(2 marks)

16. The straight lines L_1 and L_2 are perpendicular to each other. The y-intercept of L_1 is 5. It is given

that L_1 and L_2 intersect at the point (12, -4). Let R be the region (including the boundary) bounded

Answers written in the margins will not be marked.

by L_1 , L_2 and the y-axis.

17.	The	general term of an arithmetic sequence is denoted by $A(n)$ where n is a positive	ive integer. It is
	give	en that $A(3) = 22$ and $A(10) = 50$.	
	(a)	Find A(1).	(2 marks)
	(b)	Suppose that $log_3B(n) = A(n)$ for any positive integer n .	
		Find the greatest value of k such that $\log_{27}[B(1)B(2) B(k)] < 2023$.	(5 marks)
			. P.
			X
			
	-	/	

18

A	

- 18. (a) A thin metal sheet ABCD is in the shape of a quadrilateral. It is given that AB = 50 cm, BC = CD, $\angle BAD = 40^{\circ}$, $\angle ABC = 130^{\circ}$, $\angle BCD = 100^{\circ}$ and $\angle ADC = 90^{\circ}$. Find CD. (2 marks)
 - (b) The metal sheet *ABCD* described in (a) is now given. Let *E* be a point lying on *AD* such that *BE* is perpendicular to *AD*. The metal sheet is folded along *BE* such that *AE* is perpendicular to the plane *BCDE*. Three thin triangular metal sheets are placed to this folded metal sheet to form a pyramid (see Figure 2).

Figure 2

- (i) Find $\angle BAC$.
- (ii) Does the angle between the plane *ABC* and the plane *BCDE* exceed 50°? Explain your answer. (5 marks)

	5
	<u> </u>
	
-/	

(a)	a) Find the equation of C in terms of r . Hence, express r^2 in terms of k . (4 m				
, ,					
(b)) L passes through the point $D(-11, 56)$.				
	(i) Find r .				
	(ii) It is given that L cuts the x -axis at the point E . Let F be a point such that C is the inscrib				
	circle of $\triangle DEF$. Is $\triangle DEF$ an obtuse-angled triangle? Explain your answer. (8 mark				
-					
-					
	<u> </u>				
	// · · · · · · · · · · · · · · · · · ·				

	A
	nswers
	ers w
	Answers written 11
	1 the mar
	marg
	i the margins w
	W1II
	not l
	e m
	will not be marked.
	a.

	X
257	
END OF PAPER	