MOCK EXAM 10 ## MATHEMATICS Compulsory Part PAPER 1 ## **Question-Answer Book** $(2 \frac{1}{4} \text{ hours})$ This paper must be answered in English ## **INSTRUCTIONS** - 1. Write your name in the space provided on Page 1. - 2. This paper consists of **THREE** sections, A(1), A(2), and B. - 3. Attempt **ALL** questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked. - 4. Graph paper and supplementary answer sheets will be supplied on request. Write your name on the graph paper and supplementary answer sheets. - 5. Unless otherwise specified, all working must be clearly shown. - 6. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures. - 7. The diagrams in this paper are not necessarily drawn to scale. | SECTION A(1) (35 marks) | | |--|-----------| | Simplify $(\alpha^2 \beta)(\alpha^3 \beta^{-2})^{-4}$ and express your answer with positive indices. | (3 marks) | | | | | | | | | | | | | | | 7)7 | | | | | | | | | | | | | | 2 3 | | | . Make b the subject of the formula $\frac{2}{a} - \frac{3}{b} = 4$. | (3 marks) | 2 (a) $$x^2 + xy - 20y^2$$, (b) $$x^2 + xy - 20y^2 - 8x + 32y$$ (3 marks) |
 |
 | | |------|------|--| | | | | | | | | | | | | - (a) Find the range of values of x which satisfy both $\frac{5-x}{3} > 2x + 1$ and $3x + 5 \ge 0$. - (b) Write down the greatest integer satisfying both inequalities in (a). (4 marks) | 7. | | a polar coordinate system, O is the pole. The polar coordinates of the points A and B are (| | |----|-----|--|---------| | | | d $(r, 165^{\circ})$ respectively, where r is a positive constant. It is given that the distance between is $6\sqrt{2}$. Find | 1 A and | | | (a) | | | | | (b) |) r , | | | | (c) | | marks) | | | | | | | | - | • | Figure 1 (a) Prove that $\triangle ACE \sim \triangle DBE$. Answers written in the margins will not be marked. - (b) It is given that AC = 40 cm, AE = 75 cm, CE = 85 cm and DE = 45 cm. - (i) Is $\triangle ACE$ a right-angled triangle? Explain your answer. | (ii) Find the area of the quadrilateral <i>ACDB</i> . | (5 marks | |---|----------| | | | 6 If a family is randomly selected from the families, then the probability that the selected family has less than 3 children is $\frac{3}{4}$. - (a) Find k. - (b) Write down the median, the inter-quartile range and the standard deviation of the distribution. (5 marks) | SE | CTI | ON A(2) (35 marks) | |-----|-----|---| | 10. | | e cost of making a square handkerchief with a side of s cm is \$C. C is partly constant and partly ites as s^2 . When $s = 15$, $C = 65$ and when $s = 20$, $C = 100$. | | | (a) | Find the cost of making a handkerchief with a side of 18 cm. (4 marks) | | | (b) | Someone claims that the total cost of making two handkerchiefs with a side of 9 cm is higher than the cost of making a handkerchief with a side of 18 cm. Is the claim correct? Explain your answer. (2 marks) | <u>) </u> | | | | | | | | | The mean of the distribution is 24. - Find *a* and *b*. (3 marks) - (b) Write down the greatest possible range of the distribution. (1 mark) - (c) Find the least possible inter-quartile range of the distribution. (3 marks) Answers written in the margins will not be marked. | 12. | Let | $f(x) = 2x^3 + kx^2 + 5x + 4$, where k is a constant. It is given that $f(x) = (2x + 1)(ax^2 + bx + c)$, | |-----|-----|--| | | whe | ere a , b and c are constants. | | | (a) | Find a , b and c . (4 marks) | | | (b) | Someone claims that all the roots of the equation $f(x) = 0$ are real numbers. Do you agree? | | | | Explain your answer. (3 marks) | | | | | | | | | | | | | | | | | | | - | _ | | | | | | | | | | | | | | 10 |
 | |-------------| | | | | | | | | | ne coordinates of the points E , F and G are $(-5, 6)$, $(2, 9)$ and $(7, -3)$ respectively asses through E and the centre of C is G . | The circle C | |---|--| | Find the equation of C . | (2 marks) | | Prove that F lies inside C . | (2 marks) | | Let H be a moving point on C . When H is closest from F , | | | (i) describe the geometric relationship between F , G and H ; | | | (ii) find the equation of the straight line which passes through F and H . | (3 marks) | | | | | | isses through E and the centre of C is G. i) Find the equation of C. i) Prove that F lies inside C. i) Let H be a moving point on C. When H is closest from F, (i) describe the geometric relationship between F, G and H; | 14 Answers written in the margins will not be marked. | A queue is randomly formed by 6 boys and 4 girls. | | |---|----------| | (a) How many different queues can be formed? | (1 mark) | | (b) Find the probability that no girls are next to each other in the queue. | (3 marks | | | | | | | | | 7) 7 | 16 (3 marks) (2 marks) 16. The straight lines L_1 and L_2 are perpendicular to each other. The y-intercept of L_1 is 5. It is given that L_1 and L_2 intersect at the point (12, -4). Let R be the region (including the boundary) bounded Answers written in the margins will not be marked. by L_1 , L_2 and the y-axis. | 17. | The | general term of an arithmetic sequence is denoted by $A(n)$ where n is a positive | ive integer. It is | |-----|------|---|--------------------| | | give | en that $A(3) = 22$ and $A(10) = 50$. | | | | (a) | Find A(1). | (2 marks) | | | (b) | Suppose that $log_3B(n) = A(n)$ for any positive integer n . | | | | | Find the greatest value of k such that $\log_{27}[B(1)B(2) B(k)] < 2023$. | (5 marks) | | | | | . P. | | | | | X | | | | | - | / | | | | | | | | | | | | 18 | A | | |---|--| - 18. (a) A thin metal sheet ABCD is in the shape of a quadrilateral. It is given that AB = 50 cm, BC = CD, $\angle BAD = 40^{\circ}$, $\angle ABC = 130^{\circ}$, $\angle BCD = 100^{\circ}$ and $\angle ADC = 90^{\circ}$. Find CD. (2 marks) - (b) The metal sheet *ABCD* described in (a) is now given. Let *E* be a point lying on *AD* such that *BE* is perpendicular to *AD*. The metal sheet is folded along *BE* such that *AE* is perpendicular to the plane *BCDE*. Three thin triangular metal sheets are placed to this folded metal sheet to form a pyramid (see Figure 2). Figure 2 - (i) Find $\angle BAC$. - (ii) Does the angle between the plane *ABC* and the plane *BCDE* exceed 50°? Explain your answer. (5 marks) | | 5 | |-------------|----------| | | | | | <u> </u> | | | | | | | -/ | | | | | | | | | | | | (a) | a) Find the equation of C in terms of r . Hence, express r^2 in terms of k . (4 m | | | | | |-----|---|--|--|--|--| | , , | | | | | | | (b) |) L passes through the point $D(-11, 56)$. | | | | | | | (i) Find r . | | | | | | | (ii) It is given that L cuts the x -axis at the point E . Let F be a point such that C is the inscrib | | | | | | | circle of $\triangle DEF$. Is $\triangle DEF$ an obtuse-angled triangle? Explain your answer. (8 mark | - | - | <u> </u> | | | | | | | // · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | A | |--|---------------------| | | nswers | | | ers w | | | Answers written 11 | | | | | | 1 the mar | | | marg | | | i the margins w | | | W1II | | | not l | | | e m | | | will not be marked. | | | a. | X | |--------------|---| 257 | | | | | | | | | | | | END OF PAPER | |