MOCK EXAM 7

MATHEMATICS Compulsory Part PAPER 1

Question-Answer Book

 $(2 \frac{1}{4} \text{ hours})$

This paper must be answered in English

INSTRUCTIONS

- 1. Write your name in the space provided on Page 1.
- 2. This paper consists of **THREE** sections, A(1), A(2), and B.
- 3. Attempt **ALL** questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Graph paper and supplementary answer sheets will be supplied on request. Write your name on the graph paper and supplementary answer sheets.
- 5. Unless otherwise specified, all working must be clearly shown.
- 6. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 7. The diagrams in this paper are not necessarily drawn to scale.

Sim	aplify $\frac{x^9y^7}{(x^2y^3)^4}$ and express your a	unswer with positive indices.	(3 marks
	$(x^2y^3)^4$	•	`
			<i>j</i>
Mal			
	Δ_Ε	314	
Mal	ke y the subject of the formula $\frac{A-E}{C}$	$\frac{3y}{}=5y.$	(3 marks
		,	

Answers
written in the
margins
will not be r

Mock exam paper 7 3. (a) Round up 2059.856 to the nearest integer. (b) Round down 2059.856 to 1 decimal place. (c) Round off 2059.856 to 2 significant figures. (3 marks) Simplify $\frac{3}{6m-5}$ — 4. (3 marks)

Factorize

Answers written in the margins will not be marked

- (a) 6x 6y,
- (b) $x^2 + 5xy 6y^2$,
- (c) $x^2 + 5xy 6y^2 6x + 6y$.

(4 marks)

- (a) Find the range of values of x which satisfy both $\frac{2(x-4)}{7} + 15 > 3(2x-3)$ and $x+5 \ge 0$.
 - (b) How many positive integers satisfy both inequalities in (a)? (4 marks)

(5 ma

8.	It is given that $f(x)$ is the sum of two parts, one part varies as x and the other part varies That $f(4) = 44$ and $f(7) = 98$.	s as x^2 . Suppose
	(a) Find $f(x)$.	
	(b) Solve the equation $f(x) = 60$.	(5 marks)

9.	In Figure 1, $ABCDE$ is a circle. It is given that $AB//EC$ and $AB = AE$. AC and BE intersect at the point
	F_{\cdot}

Figure 1

Express x and y in terms of θ .		(5 marks)
	7	
X	<i></i>	
		···············
7		
		·

10.	The coordinates of the points A and B are $(2, 9)$ and $(10, 15)$ respectively. Let P be a moving point in				
	The rectangular coordinate plane such that P is equidistant from A and B . Denote the locus of P by Γ				
	(a)	Find the equation of Γ . (2 marks)			
	(b)	Γ intersects the x-axis and the y-axis at M and N respectively. Denote the origin by O. Let C be the circle which passes through O, M and N. Someone claims that the area of C exceeds 500			
		unit square. Is the claim correct? Explain your answer. (3 marks)			

11. The following table shows the distribution of the numbers of toys of some children:

Number of toys	0	1	2	3	4
Number of children	9	7	10	5	k

It is given that k is a positive integer.

- (a) If the mode of the distribution is 2, write down
 - (i) the least possible value of k;
 - (ii) the greatest possible value of k.

(2 marks)

- (b) If the median of the distribution is 2, write down
 - (i) the least possible value of k;

Answers written in the margins will not be marked.

(ii) the greatest possible value of k.

(2 marks)

(c) If the mean of the distribution is 2, find the value of k.

(2 marks)

12.	A solid metal cylinder of base radius 18 cm and height 9 cm is melted and recast into two similar solid cones. The ratio of the base area of the smaller cone to that of the larger cone is 1 : 4.				
	Find the volume of the smaller cone in terms of π .	(3 marks)			
) If the height of the smaller cone is 12 cm, find the total surface area of the				

	1 1
	
7	
. 	

11

(a) Prove that $\triangle ABD \cong \triangle ACE$.

(2 marks)

- (b) Suppose that AD = 65 cm, DF = 25 cm and BE = 169 cm.
 - Find AF. (i)

Answers written in the margins will not be marked

(ii) Is $\triangle ADC$ a right-angled triangle? Explain your answer.

(5 marks)

7		

	тоск ехат рарег
	
	• • • / <u>N</u>
)
/ Y	

Answers
written
in
the
written in the margins
will not be r
be
marked

)	

13.	If 6 girls and 8 boys randomly form a queue, find the probability that no girls are next to each other the queue. (3 marks)

	(a) the common difference of the sequence,	(2 marks
	(b) the greatest value of n such that the sum of the first n terms of the sequence is r	negative. (3 marks
	20)	
•		

17. (a) In Figure 3(a), ABCD is a paper card in the shape of a trapezium. It is given that AD = DC = CB, AB = 40 cm, $\angle ABD = 35^{\circ}$ and $\angle BAD = 70^{\circ}$.

Figure 3(a)

Find the length of *AD*.

(2 marks)

(b) The paper card in Figure 3(a) is folded along BD such that the distance between A and C is 30 cm (see Figure 3(b)).

(i) Find $\angle ABC$.

Answers written in the margins will not be marked.

(ii) Find the angle between the plane ABD and the plane BCD. (5 marks)

P	
Answers	
written in the ma	•
in th	
e mai	
surg.	
W1II	
vill not be m	
be 1	
ark	
ced.	
1	

$\frac{2}{2}$

- 18. The equation of the parabola Γ is $y = 2x^2 + 4kx 2x + 6k 5$, where k is a real constant. Denote the straight line y = 8 by L.
 - (a) Prove that L and Γ intersect at two distinct points.

(3 marks)

- (b) The points of intersection of L and Γ are A and B.
 - (i) Let a and b be the x-coordinates of A and B respectively. Prove that $(a-b)^2 = 4k^2 16k + 27$.
 - (ii) Is it possible that the distance between A and B is less than 3? Explain your answer.

(5 marks)

_		
-		
- 1		
- [
- 1		
-1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
-1	-	
-1		
-1		
- 1		
-1		
-1		
-1		
-1		
-1		
-1		
-1		
-1		
-1	-	
-1		
-1		
-1		
- [
- [
- [
- [
.	-	
- [
-1		
-1		
-1		
-1		
-1		
١.		
1		
-1		
-1		
٠١		
-1		
١.		
-1		
-1		
-1		
-1		
-1		
٠.		
-1		
-1		
. І		
1		
٦,		
-1		
.		
٠l		
-1		
-1		
- [
- [
۱,		
- [
۱ ۱		
- [
- [
- [
- [
- [
- [
- [
- [
- [
- [
- [
- [
- [
- [
- [
- [
- [
- [
- [
- [
- [
- [
-		
- [
- [
- [
- [
-		
- [
- [
- [
- [
- 1		

19.	Let	$f(x) = x^2 - 4kx - 12x + 4k^2 + 18k + 44$, where k is positive constant. Denote the vertex of the
	grap	oh of $y = f(x)$ and the vertex of the graph $y = -f(x) + 16$ by Q and R respectively.
	(a)	Using the method of completing the square, express the coordinates of Q in terms of k .
		(2 marks)
	(b)	Write down the coordinates of R in terms of k . (1 mark)
	(c)	The coordinates of the point S are $(10k + 6, 8)$. Denote the inscribed circle of \triangle QRS by C.
		Denote the centre of C by U . Suppose that QS is the tangent to C at the point T .
		(i) Express the equation of the straight line which passes through Q and S in terms of k .
		(ii) Express the equation of C in terms of k .
		(iii) It is given that the coordinates of the point V are (47, 20). Is it possible that $STUV$ is a
		rectangle? Explain your answer. (9 marks)
	_	
		<u></u>

Answers	•
_	
n the	
written in the margins	•
will no	
will not be ma	
ırked.	

1 1
 7

,
END OF PAPER