MOCK EXAM 9 MATHEMATICS Compulsory Part PAPER 2

 $(1\frac{1}{4})$ hours)

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet.
- 2. When told to open this book, you should check that all the questions are there. Look for the words

'END OF PAPER' after the last question.

- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1.
$$(2x + 5y)^2 - (2x - 5y)^2 =$$

A. $8x^2$.
B. $20xy$.

- C. 40*xy*.
- D. $8x^2 + 50y^2$.

2.
$$\frac{2x^4}{(2x^2)^6} =$$

A.
$$\frac{1}{6x^2}$$
.
B. $\frac{1}{6x^4}$.
C. $\frac{1}{32x^3}$.
D. $\frac{1}{32x^8}$.

- 3. If 8x 3y = 14x + 6y = 60, then y =
 - A. -6.
 - B. -4.
 - C. 4.
 - D. 6.

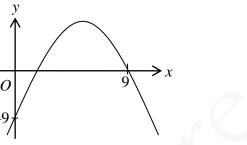
4. If p and q are constants such that $x^2 - 2x + p \equiv (x - 3)(x + q) - 5$, then p = x + q

- A. -10.
- B. -8.
- C. –5.
- D. 1.

5. If
$$b = \frac{4}{5a} + c$$
, then $a =$
A. $\frac{4}{5(b-c)}$.
B. $\frac{4}{5(c-b)}$.
C. $\frac{5(b-c)}{4}$.
D. $\frac{5(c-b)}{4}$.

6. $\sqrt{2023} =$

- A. 44.97 (correct to 2 decimal places).
- B. 44.978 (correct to 3 significant figures).
- C. 44.977772 (correct to 6 significant figures).
- D. 44.9778 (correct to 4 decimal places).


7. The largest integer satisfying the compound inequality -3(x+8) - 2 > 16 or $\frac{4x+1}{3} < 7$ is

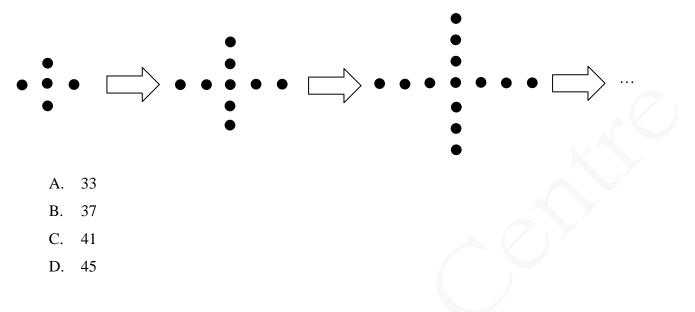
- A. 5.
- B. 4.
- С. –2.
- D. -3.

8. Let k be a constant. If $f(x) = x^3 - kx^2 + k$, then f(k) + f(-k) = k

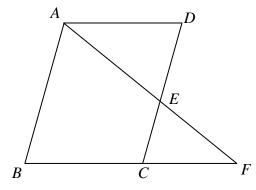
- A. 0.
- B. 2*k*.
- C. $-2k^3 + 2k$.
- D. $2k^3 + 2k$.
- 9. Let $f(x) = x^{15} + 3x k$, where k is a constant. If f(x) is divisible by x + 1, find the remainder when f(x) is divided by x 1.
 - A. -4
 - B. 0
 - C. 6
 - D. 8

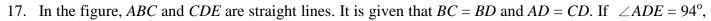
- 10. The figure shows the graph of $y = -x^2 + mx + n$, where *m* and *n* are constants. The equation of the axis of symmetry of the graph is
 - A. x = 3.
 - B. x = 4.
 - C. x = 5.
 - D. *x* = 6.

- A sum of \$250 000 is deposited at an interest rate of 4% per annum for 5 years, compounded monthly. Find the amount correct to the nearest dollar.
 - A. \$305 249
 - B. \$305 047
 - C. \$304 163
 - D. \$300 000

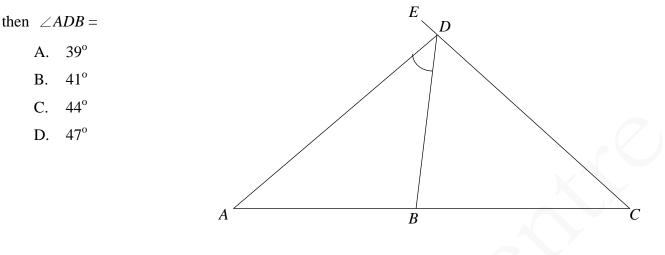

12. If a, b and c are non-zero constants such that $x(x-4a) - 2a \equiv x^2 - 3(bx+c)$, then $a:b:c = a = a^2 - 3(bx+c)$

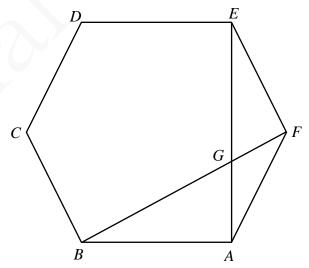
- A. 3:4:1.
- B. 3:4:2.
- C. 4:3:6.
- D. 6:3:4.

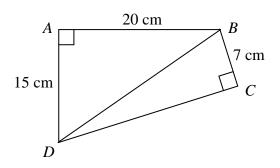

13. If z varies directly as x^2 and inversely as y, which of the following must be a constant?


A.
$$\frac{x^2}{yz}$$

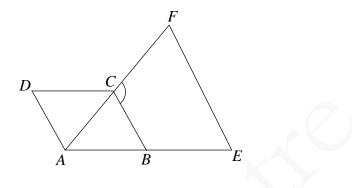
B. $\frac{x^2y}{z}$
C. $\frac{x}{y^2z}$
D. $\frac{y}{x^2z}$


14. In the figure, the 1st pattern consists of 5 dots. For any positive integer n, the (n + 1)th pattern is formed by adding 4 dots to the *n*th pattern. Find the number of dots in the 10th pattern.

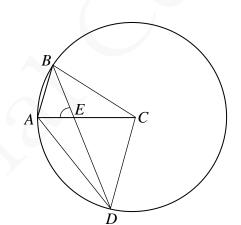

- 15. The base of a solid right pyramid is a rectangle with length 36 cm and width 14 cm. If the height of the pyramid is 24 cm, then the total surface area of the pyramid is
 - A. 600 cm^2 .
 - B. 1080 cm².
 - C. 1320 cm^2 .
 - D. 1824 cm^2 .
- 16. In the figure, *ABCD* is a parallelogram. *E* is a point lying on *CD* such that DE : EC = 4 : 3. *AE* produced and BC produced meet at *F*. If the area of Δ *CEF* is 18 cm², then the area of the parallelogram *ABCD* is
 - A. 72 cm^2 .
 - B. 80 cm^2 .
 - C. 98 cm^2 .
 - D. 112 cm^2 .



- 18. In the figure, *ABCDEF* is a regular hexagon. *AE* and *BF* intersect at the point *G*. Which of the following are true?
 - I. AG = FG
 - II. $\triangle ABG \cong \triangle FEG$
 - III. *BDEF* is a cyclic quadrilateral.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

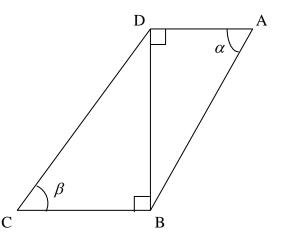

- 19. In the figure, the area of quadrilateral ABCD is
 - A. 234 cm^2 .
 - B. 318 cm^2 .
 - C. 384 cm².
 - D. 468 cm².

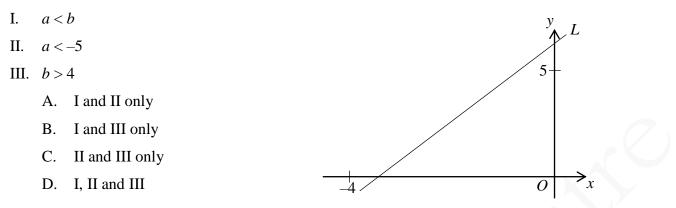
20. In the figure, ABCD is a rhombus. ABE and ACF are straight lines such that AE = AF. If $\angle BEF = 56^{\circ}$,


then $\angle BCF =$

- A. 136°.
- B. 124°.
- C. 112°.
- D. 108°.

21. In the figure, *ABCD* is a trapezium. *C* is the centre of the circle *BAD*. *AC* and *BD* intersect at *E*. If $\angle BDC = 38^{\circ}$, then $\angle AEB =$


- A. 57°.
- B. 66°.
- C. 71°.
- D. 76°.


- 22. In the figure, $\frac{AB}{CD} =$
 - A. $\frac{\cos\beta}{\cos\alpha}$.

B.
$$\frac{\sin\beta}{\sin\alpha}$$

- C. $\sin \alpha \sin \beta$.
- D. $\cos \alpha \cos \beta$.

23. In the figure, the equation of the straight line *L* is ax + by - 20 = 0. Which of the following are true?

- 24. The coordinates of the points *A* and *B* are (1, 2) and (3, -2). Let *P* be a moving point in the rectangular coordinate plane such that AP = BP. Find the equation of the locus of *P*.
 - A. x 2y 2 = 0
 - B. x 2y + 10 = 0
 - C. x 2y + 18 = 0
 - D. 2x y 2 = 0
- 25. The coordinates of the point *A* are (3, -6). *A* is reflected about the *y*-axis to the point *B*. *B* is then rotated clockwise about the origin through 90° to the point *C*. Find the *x*-coordinate of *C*.
 - A. 6
 - B. 3
 - C. –3
 - D. -6
- 26. The coordinates of the points *A* and *B* are (5, 2) and (8, 6) respectively. If *P* is a moving point in the rectangular coordinate plane such that $\angle APB = 90^\circ$, then the locus of *P* is
 - A. the angle bisector of $\angle AOB$, where O is the origin.
 - B. the straight line which passes through *A* and *B*.
 - C. the perpendicular bisector of *AB*.
 - D. the circle with *AB* as a diameter.

- 27. The equation of the circle C is $2x^2 + 2y^2 + 8x 16y + 21 = 0$. Which of the following is/are true?
 - I. The centre of *C* lies in the fourth quadrant.
 - II. The origin lies outside *C*.
 - III. The area of *C* is 299π .
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only
- 28. Two numbers are randomly drawn at the same time from ten balls numbered 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 respectively. Find the probability that the product of the two numbers drawn is even.
 - A. $\frac{2}{9}$ B. $\frac{5}{9}$ C. $\frac{7}{9}$ D. $\frac{1}{2}$
- 29. The stem-and-leaf diagram below shows the distribution of weights (in kg) of some students in a class.

Stem (tens)		Leaf (units)										
	$\frac{1}{2}$	8 0 0	8 1	8 1	9 1	9 2	3	1	Λ	5	7	8
	3	0		1	2	2	5	4	7	5	1	0

Find the inter-quartile range of the distribution.

- A. 7.5
- B. 8
- C. 8.5
- D. 9

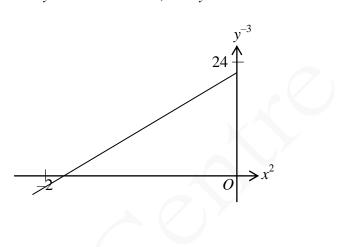
30. The table below shows the distribution of the number of books read by some students in a year.

Number of books read	10	11	12	13	14
Number of students	19	18	22	10	6

Which of the following is true?

A. The median of the distribution is 11.

B. The mode of the distribution is 22.

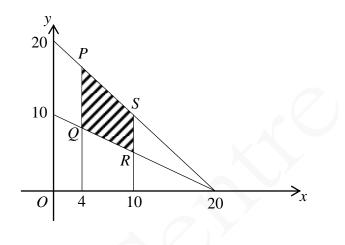

- C. The interquartile range is 2.
- D. The lower quartile is 11.

Section B

31. The graph in the figure shows the linear relation between y^{-3} and x^2 . If x = 4, then y =

D. 6.

- 32. If $x \log y = x^2 \log y^2 = -3$, then y =
 - A. -1 or 3.
 - B. 2 or 6.
 - C. $\frac{1}{1000000}$ or $\frac{1}{100}$.
 - D. 100 or 1 000 000.


33. $10010001010001_2 =$

- A. $2^{13} + 2^{10} + 81$.
- B. $2^{13} + 2^{10} + 161$.
- C. $2^{14} + 2^{11} + 81$.
- D. $2^{14} + 2^{11} + 161$.

34. If β is a real number, then the real part of $\frac{3-i^5}{\beta+2i} + i^8$ is

A.
$$\frac{3\beta-2}{\beta^2-4}$$

B.
$$\frac{3\beta-2}{\beta^2+4}$$

C.
$$\frac{\beta^2+3\beta+2}{\beta^2-4}$$

D.
$$\frac{\beta^2+3\beta+2}{\beta^2+4}$$

- 35. If the figure, *PQ* and *SR* are vertical lines. If (x, y) is a point lying in the shaded region *PQRS* (including the boundary), at which point does 9x 5y + 4 attain its greatest value?
 - A. *P*
 - B. Q
 - C. *R*
 - D. *S*

- 36. The nth term of a sequence is 3n 28. Which of the following is/are true?
 - I. -16 is a term of the sequence.
 - II. The sequence has 8 negative terms.
 - III. The sum of the first *n* terms of the sequence is $\frac{3n^2 53n}{2}$.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

- 37. Let k be a constant. The straight line x + 3y 12 = 0 and the circle $2x^2 + 2y^2 16x + ky + 64 = 0$ intersect at points A and B. If the y-coordinate of the mid-point of AB is 3, find k.
 - A. –24
 - B. 36
 - C. 156
 - D. 216

A

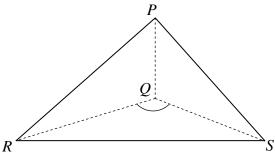
38. In the figure, *O* is the centre of the sector *OABC*. It is given that *OAB* is an equilateral triangle. *AC* and *OB* intersect at the point *D*. If OC = 8 cm and $\angle AOC = 90^{\circ}$, find the area of $\triangle ABC$ correct to the nearest cm².

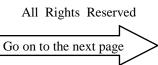
С

0

В

Ď


- A. 12 cm^2
- B. 16 cm^2
- C. 17 cm^2
- D. 28 cm^2


39. In the figure, *EF* is the tangent to the circle at *A*. If *AB* is the angle bisector of $\angle DAF$ and *CB* = *CD*, then $\angle ABC = C$

- A. 142°.
- B. 123°.
- C. 114°.
- D. 104°.

- 40. The figure shows a tetrahedron *PQRS* with the base *QRS* lying on the horizontal ground. It is given that Q is vertically below *P*. If $\angle PRQ = 50^{\circ}$, $\angle PSQ = 66^{\circ}$ and $\angle RPS = 60^{\circ}$, find $\angle RQS$ correct to the nearest degree.
 - A. 120°
 - **B**. 130°
 - C. 140°
 - D. 150°

- 41. If $\triangle ABC$ is a right-angled triangle with $\angle ABC = 90^\circ$, which of the following is/are true?
 - I. The circumcentre of $\triangle ABC$ lies on AC.
 - II. The centroid of $\triangle ABC$ lies outside $\triangle ABC$.
 - III. The in-centre of $\triangle ABC$ lies inside $\triangle ABC$.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only
- 42. There are 6 red balls and 8 blue balls in a bag. If 5 balls are randomly drawn from the bag, find the probability that at most 3 blue balls are drawn.

A.	$\frac{10}{143}$
B.	$\frac{34}{143}$
C.	$\frac{109}{143}$
D.	$\frac{133}{143}$

43. Bag A contains 4 red balls, 4 green balls and 3 blue balls while bag B contains 2 red balls, 5 green balls and 4 brown balls. If one ball is drawn from each bag, then the probability that the two balls drawn are of different colours is

A.	$\frac{28}{121}.$
B.	$\frac{40}{121}.$
C.	$\frac{61}{121}.$
D.	$\frac{93}{121}.$

- 44. In an examination, the mean score of the examination is 65 marks. The examination score of Jenny is 50 marks and her standard score is -2.5. If the examination score of Sue is 95, then her standard score is
 - A. 4.5
 - B. 5
 - C. 6
 - D. 6.5
- 45. The median, the interquartile range and the variance of a set of numbers are m, r and v respectively. Each number of the set is multiplied by k and then 3 is subtracted from each resulting number to form a new set of numbers where k is a positive number. Which of the following is/are true?
 - I. The median of the new set of numbers is km 3.
 - II. The interquartile range of the new set of numbers is kr 3.
 - III. The variance of the new set of numbers is kv 3.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

END OF PAPER