Suggested Solution for 2018 HKDSE Mathematics(core) Multiple Choice Questions В

- 1.
 - 8^{2n+1} 4³ⁿ⁺¹ $\frac{(2^3)^{2n+1}}{(2^2)^{3n+1}}$ 2⁶ⁿ⁺³ 2⁶ⁿ⁺² $= 2^{(6n+3)-(6n+2)}$
 - = 2

2. D

$$\frac{\alpha}{1-x} = \frac{\beta}{x}$$
$$\alpha x = \beta(1-x)$$
$$= \beta - \beta x$$
$$\alpha x + \beta x = \beta$$
$$(\alpha + \beta)x = \beta$$
$$x = \frac{\beta}{\alpha + \beta}$$

3. С

 $h^2 - 6h - 4k^2 - 12k$ $= h^2 - 4k^2 - 6h - 12k$ = (h + 2k)(h - 2k) - 6(h + 2k)= (h + 2k)(h - 2k - 6)

4. Α

$$\frac{1}{3x+7} - \frac{1}{3x-7}$$
$$= \frac{3x-7-(3x+7)}{(3x+7)(3x-7)}$$
$$= \frac{-14}{9x^2-49}$$
$$= \frac{14}{49-9x^2}$$

Page 2 5. *A*

A $y = 16 - (x - 6)^{2}$ $= 16 - (x^{2} - 12x + 36)$ $= -x^{2} + 12x - 20$ When $y = 0, -x^{2} + 12x - 20 = 0$ $x^{2} - 12x + 20 = 0$ (x - 2)(x - 10) = 0x = 2 or 10

 \therefore A is true.

Note that

- (i) a = -1 < 0 \therefore The graph opens downwards. i.e. B is NOT true.
- (ii) The y-intercept of the graph is $-20 \neq 16$. i.e. C is NOT true.
- (iii) The graph does not pass through (0, 0). i.e. D is NOT true.

6. D

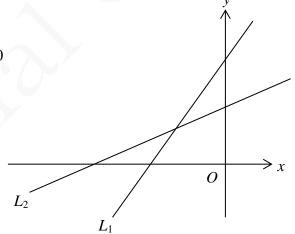
Rewrite $L_1: y = -\frac{3}{a}x + \frac{b}{a}$ and $L_2: y = -cx + d$.

From the figure, the slope of $L_1 = -\frac{3}{a} > 0 \implies a < 0$

From the figure, the slope of $L_2 = -c > 0 \Rightarrow c < 0$

Also,
$$-\frac{3}{a} > -c$$

 $\frac{3}{a} < c$
 $3 > ac$ ($\therefore a < 0$) i.e. $ac < 3$



 \therefore I is true.

From the figure, the *y*-intercept of L_1 > the *y*-intercept of L_2

$$\frac{b}{a} > d$$

 $b < ad$ (∵ $a < 0$) i.e. $ad > b$
∴ II is NOT true.
Substitute $y = 0$ into the equations of L_1 and L_2 , we get
the *x*-intercept of $L_1 = \frac{b}{3}$ and the *x*-intercept of $L_2 = \frac{d}{c}$

From the figure, the *x*-intercept of L_1 > the *x*-intercept of L_2

 $\frac{b}{3} > \frac{d}{c}$ $bc < 3d \quad (\because c < 0)$ $\therefore \quad \text{III is true.}$

Page 3 7. I

D f(2m-1) = $3(2m-1)^2 - 2(2m-1) + 1$ = $3(4m^2 - 4m + 1) - 4m + 2 + 1$ = $12m^2 - 12m + 3 - 4m + 3$ = $12m^2 - 16m + 6$

8. C

g(x) is divisible by x - 1g(1) = 0 $(1)^8 + a(1)^7 + b = 0$ b = -1 - a

By the Remainder theorem, the required remainder = g(-1)

 $= (-1)^{8} + a(-1)^{7} + b$ = 1 - a + b = 1 - a + (-1 - a) = 1 - a - 1 - a = -2a

9. D

The required interest = $\$100\ 000(1 + \frac{2\%}{12})^{3 \times 12} - \$100\ 000$ = $\$6\ 178$

10. B

 $3a = 4b \Rightarrow \frac{a}{b} = \frac{4}{3} \quad \text{i.e.} \quad a:b = 4:3$ $a:c = 2:5 \Rightarrow a:c = 4:10$ $\therefore \quad a:b:c = 4:3:10$ Let a = 4k, b = 3k and c = 10k where k is a constant. $\frac{a+3b}{b+3c}$ $= \frac{4k+3(3k)}{3k+3(10k)}$ $= \frac{4k+9k}{3k+30k}$ $= \frac{13}{33}$

$$w = \frac{k\sqrt{u}}{v^2} \text{ where } k \text{ is a constant.}$$
$$k = \frac{wv^2}{\sqrt{u}}$$
$$k^2 = \frac{w^2v^4}{u} \text{ must be a constant.}$$

12. A

 $a_{5} = a_{3} + a_{4} = 21 + a_{4}$ $a_{6} = a_{4} + a_{5} = a_{4} + (21 + a_{4}) = 89$ $2a_{4} + 21 = 89$ $a_{4} = 34$ $a_{4} = a_{2} + a_{3} = 34$ i.e. $a_{2} + 21 = 34$ $a_{2} = 13$ $a_{3} = a_{1} + a_{2} = 21$ i.e. $a_{1} + 13 = 21$ $\therefore a_{1} = 8$

13. C

$$\frac{1-2x}{3} \ge x-3 \text{ or } 4x+9 < 1$$

$$1-2x \ge 3(x-3) \text{ or } 4x < -8$$

$$1-2x \ge 3x-9 \text{ or } x < -2$$

$$1+9 \ge 3x+2x \text{ or } x < -2$$

$$5x \le 10 \text{ or } x < -2$$

$$x \le 2 \text{ or } x < -2$$

$$\therefore x \le 2$$

14. B

Absolute error of the measurement = 0.5 cm

The smallest possible area of the octagon

= The smallest possible area of rectangle *ABCD* – the largest possible area of rectangle *EFGH*

 $= (6 - 0.5) \times (4 - 0.5) - (2 + 0.5) \times (2 + 0.5)$

 $= 13 \text{ cm}^2$

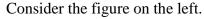
The largest possible area of the octagon

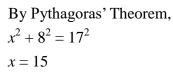
= The largest possible area of rectangle *ABCD* – the smallest possible area of rectangle *EFGH*

$$= (6+0.5) \times (4+0.5) - (2-0.5) \times (2-0.5)$$

$$= 27 \text{ cm}^2$$

 \therefore 13 < x < 27





Volume required

$$= \frac{1}{2} \times 15 \times 8 \times 12$$
$$= 720 \text{ cm}^3$$

 $\therefore BE: EC = 5:3$

$$\therefore EB: AD = 5:8$$

Note that $\triangle AFD \sim \triangle EFB$.

- \therefore *EF* : *AF* = *BF* : *DF* = 5 : 8 (corr. sides, ~ Δ s)
- $\therefore \quad \text{Area of } \triangle BEF : \text{ area of } \triangle BAF = EF : AF = 5 : 8 (\therefore \quad \triangle BEF \text{ and } \triangle BAF \text{ have the same height.})$ Area of $\triangle BEF : 120 = 5 : 8$ Area of $\triangle BEF = 75 \text{ cm}^2$ Area of $\triangle ABE = \text{ area of } \triangle BEF + \text{ area of } \triangle BAF$ = 75 + 120

$$= 195 \text{ cm}^2$$

Area of $\triangle DBC$: area of $\triangle ABE = BC$: BE = 8:5 ($\therefore \triangle DBC$ and $\triangle ABE$ have the same height.)

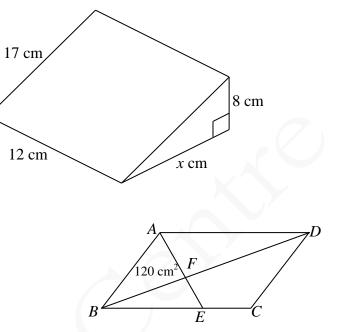
Area of $\triangle DBC$: 195 = 8 : 5

Area of $\triangle DBC = 312 \text{ cm}^2$

 \therefore Area of *CDFE* = area of $\triangle DBC$ – area of $\triangle BEF$

= 312 - 75

 $= 237 \text{ cm}^2$



Page 6 17. B

• .• DE = AE (line from centre \perp chord bisects chord)

$$\therefore DE = AE = \frac{AF + DF}{2}$$

$$= \frac{9 + 39}{2}$$

$$= 24 \text{ cm}$$
By Pythagoras' Theorem,
 $OA^2 = AE^2 + OE^2$

$$= 24^2 + 18^2$$

$$\therefore \text{ Radius, } r = OA = OB = 30 \text{ cm}$$
Let G be the foot of the perpendicular from B to OC.
 $EF = AE - AF$

$$= 24 - 9$$

$$= 15 \text{ cm}$$
 $BG = EF = 15 \text{ cm}$
 $\sin \angle BOG = \frac{BG}{OB} = \frac{15}{30} = \frac{1}{2}$

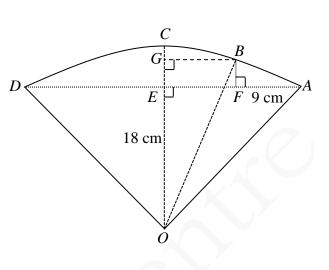
$$\angle BOG = 30^{\circ}$$

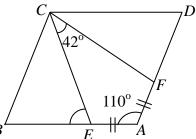
$$\therefore \text{ Area of the sector } OBC = \pi \times 30^2 \times \frac{30^{\circ}}{360^{\circ}}$$

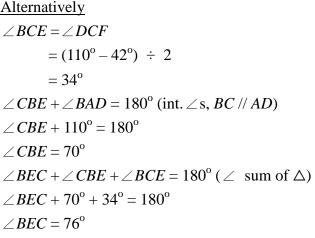
$$= 75\pi \text{ cm}^2$$

18. B

In $\triangle BCE$ and $\triangle DCF$, BC = DC (property of rhombus) $\angle CBE = \angle CDF$ (property of rhombus) \therefore AB = AD (property of rhombus) and AE = AF (given) R $\therefore BE = AB - AE = AD - AF = DF$ E $\triangle BCE \cong \triangle DCF$ (SAS) Alternatively · · $\angle BCE = \angle DCF$ Join CA. In $\triangle AEC$ and $\triangle AFC$, $=(110^{\circ}-42^{\circ}) \div 2$ $= 34^{\circ}$ CE = CF (corr. sides, $\cong \Delta s$) CA = CA (common) $\angle CBE + 110^{\circ} = 180^{\circ}$ AE = AF (given) $\angle CBE = 70^{\circ}$ $\triangle AEC \cong \triangle AFC (SSS)$ $\angle ECA = \angle FCA \text{ (corr. } \angle s, \cong \triangle s)$ $=42^{\circ} \div 2=21^{\circ}$ $\angle BEC + 70^{\circ} + 34^{\circ} = 180^{\circ}$ Similarly, $\angle EAC = \angle FAC = 110^{\circ} \div 2 = 55^{\circ}$ $\angle BEC = 76^{\circ}$ · · . $\angle BEC = \angle ECA + \angle EAC \text{ (ext.} \angle \text{ of } \triangle \text{)}$ $= 21^{\circ} + 55^{\circ} = 76^{\circ}$







https://www.brightmind.com.hk

A

Ē

D

С

В

F

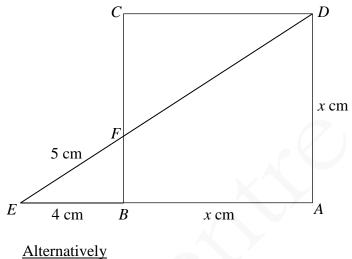
Page 7 19. D •.• DC = DE $\therefore \angle DCE = \angle DEC$ (base $\angle s$, isos. \triangle) Note $\angle CDE = 108^{\circ}$. $\angle DCE + \angle DEC + \angle CDE = 180^{\circ} (\angle \text{ sum of } \Delta)$ $2 \angle DCE + 108^{\circ} = 180^{\circ}$ $\angle DCE = 36^{\circ}$ Similarly, $\angle EDA = \angle EAD = 36^{\circ}$. Then, $\angle CDF = 108^{\circ} - 36^{\circ} = 72^{\circ}$ $\angle CFD = \angle FDE + \angle DEF$ (ext. \angle of \triangle) $\angle CFD = 36^{\circ} + 36^{\circ} = 72^{\circ}$ $\therefore \angle CDF = \angle CFD = 72^{\circ}$ \therefore *CD* = *CF* (sides opp. equal \angle s) \therefore I is true. Similarly, AF = AE. Then, AF = AE = CD = CF. In $\triangle ABF$ and $\triangle CBF$, AF = CF (proved) BF = BF (common) AB = CB (given) $\therefore \triangle ABF \cong \triangle CBF (SSS)$ \therefore II is true. $\angle EAF = 36^{\circ}$ $\angle BAF = 108^{\circ} - 36^{\circ} = 72^{\circ}$ $\therefore AF = AB$ $\therefore \ \angle ABF = \angle AFB \text{ (base } \angle s, \text{ isos. } \triangle \text{)}$ $\angle ABF + \angle AFB + \angle BAF = 180^{\circ} (\angle \text{ sum of } \triangle)$ $2 \angle AFB + 72^{\circ} = 180^{\circ}$ $\angle AFB = 54^{\circ}$ $\therefore \quad \angle AFB + \angle EAF = 54^{\circ} + 36^{\circ} = 90^{\circ}$ \therefore III is true.

Page 8 20. B

By Pythagoras' Theorem,

$$BF^2 + BE^2 = EF^2$$

 $BF^2 + 4^2 = 5^2$
 $BF = 3 \text{ cm}$
Note that $\triangle EBF \sim \triangle EAD$.
Let $AB = AD = x \text{ cm}$.
 $\frac{BF}{AD} = \frac{EB}{EA}$ (corr. sides, $\sim \triangle s$)
 $\frac{3}{x} = \frac{4}{4+x}$
 $x = 12$
 $\frac{EF}{ED} = \frac{BF}{AD}$ (corr. sides, $\sim \triangle s$)
 $\frac{5}{5+DF} = \frac{3}{12}$
 $DF = 15 \text{ cm}$



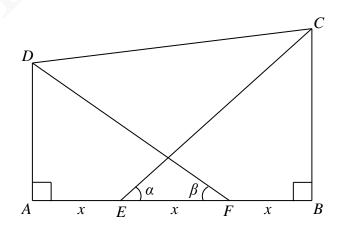
CF = BC - BF = 12 - 3 = 9 cm

By Pythagoras' Theorem,

$$DF^{2} = CF^{2} + CD^{2}$$
$$= 9^{2} + 12^{2}$$
$$DF = 15 \text{ cm}$$

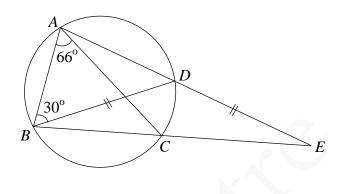
21. C

Let AE = EF = FB = x. $BE = CE \cos \alpha = 2x$ $AF = DF \cos \beta = 2x$ $\therefore CE \cos \alpha = DF \cos \beta$ $\therefore II \text{ is true.}$ $\frac{AD}{AF} = \tan \beta$ i.e. $AF = \frac{AD}{\tan \beta} = 2x$ $\frac{BC}{BE} = \tan \alpha$ i.e. $BE = \frac{BC}{\tan \alpha} = 2x$ $\therefore \frac{AD}{\tan \beta} = \frac{BC}{\tan \alpha}$ i.e. $AD \tan \alpha = BC \tan \beta$ $\therefore III \text{ is true.}$



22. B

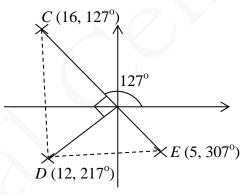
Let $\angle CED = x$. Then, $\angle DBE = \angle CED = x$ (base $\angle s$, isos. \triangle) $\angle DAC = \angle DBC = x$ ($\angle s$ in the same segment) Now, consider $\triangle ABE$. $\angle ABE + \angle BAE + \angle AEB = 180^{\circ}$ (\angle sum of \triangle) $(30^{\circ} + x) + (66^{\circ} + x) + x = 180^{\circ}$ $x = 28^{\circ}$



23. B

The figure repeats itself 4 times when rotated about an axis at the centre of the figure in one revolution.

By Pythagoras' Theorem, $CD^2 = 12^2 + 16^2$ CD = 20 $DE^2 = 12^2 + 5^2$ DE = 13Perimeter of $\triangle CDE$ = 5 + 16 + 20 + 13= 54



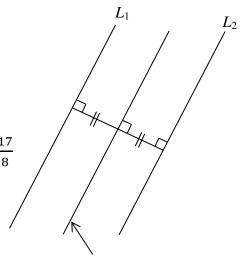
25. D

Rewrite $L_1: y = 3x + 7$ and $L_2: y = 3x - \frac{11}{4}$ Slope of L_1 = slope of $L_2 = 3$ i.e. $L_1 // L_2$ The locus of *P* is a straight line parallel to both L_1 and L_2 and sits in the middle of L_1 and L_2 .

The y-intercept of the equation of the locus of $P = (-\frac{11}{4} + 7) \div 2 = \frac{17}{8}$

The required equation is $y = 3x + \frac{17}{8}$

i.e. 24x - 8y + 17 = 0



Page 10 26. C

Rewrite $L_1: y = -\frac{4}{3}x + 12$

$$\therefore$$
 The slope of $L_1 = -\frac{4}{3}$ and the *y*-intercept of $L_1 = 12$
Substitute $y = 0$ into the equation of L_1 , we get $x = 9$.

$$\therefore L_2 \perp L_1$$

 \therefore The slope of $L_2 = \frac{3}{4}$ and the *y*-intercept of $L_2 = 12$

The equation of L_2 is $y = \frac{3}{4}x + 12$. i.e. 3x - 4y + 48 = 0Substitute y = 0 into the equation of L_2 , we get x = -16.

The required area =
$$\frac{1}{2} \times [9 - (-16)] \times 12$$

= 150

27. C

Rewrite the equation of the circle C as $x^2 + y^2 - 6x + 2y + \frac{6}{5} = 0$.

Radius of C, r =
$$\sqrt{\left(\frac{-6}{2}\right)^2 + \left(\frac{2}{2}\right)^2 - \frac{6}{5}}$$

= $\sqrt{\frac{44}{5}}$
Circumference of C = $2\pi r$
= $2\pi \sqrt{\frac{44}{5}}$
 ≈ 18.63893975

Note that :

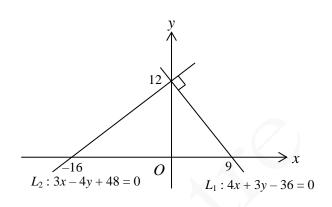
The coordinates of the centre of C are $\left(-\frac{-6}{2}, -\frac{2}{2}\right)$ i.e. $(3, -1) \rightarrow D$ is not true.

The centre lies in the third quadrant.

< 20

 \therefore C cannot only lie in the second quadrant. \rightarrow B is not true.

The distance between the origin and the centre of $C = \sqrt{3^2 + (-1)^2} = \sqrt{10} > r$ \therefore The origin lies outside C. \rightarrow A is not true.



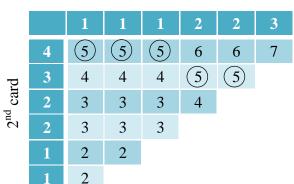
Page 11 28. A

The favourable outcomes are (1, 4), (1, 4), (1, 4), (2, 3) and (2, 3). Number of possible outcomes = $C_2^7 = 21$

$$\therefore$$
 The required probability = $\frac{5}{21}$

Alternatively

Refer to the table below.



1st card

Number of favourable outcomes = 5Number of possible outcomes = 21

 \therefore The required probability = $\frac{5}{21}$

29. C

Let *x* be the required mean. Then, $4x + 6 \times 108 = 10 \times 132$ x = 168

30. A

The first quartile, $Q_1 = 30 + a$ The third quartile, $Q_3 = 60 + b$ The inter-quartile range $= Q_3 - Q_1$ = (60 + b) - (30 + a) $= 30 + b - a \le 25$ i.e. $a - b \ge 5$ $\therefore b \ge 0$ and $a \le 9$ $\therefore 5 \le a \le 9$ and $0 \le b \le 4$

31. C

Observing that the graph on the right [which is f(x)] is reflected about the *x*-axis and translated 4 units to the left to give the graph on the left, the answer is C.

Note that

A represents a graph due to reflection about the x-axis and enlargement along y-direction.

B represents a graph due to reflection about the y-axis and contraction along x-direction.

D represents a graph due to reflection about the y-axis and translation along x-direction.

Page 12 32. C

 \therefore y increases as x increases in both graphs.

 \therefore a > 1 and b > 1

 \therefore I is true.

For x > 1, $\log_a x > \log_b x$

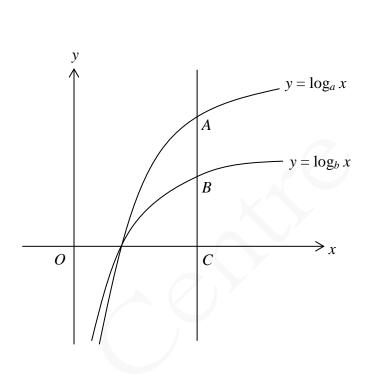
 $\frac{\log x}{\log a} > \frac{\log x}{\log b}$ [By change of base]

$$\frac{\log b}{\log a} > 1 \twoheadrightarrow b > a$$

 \therefore II is NOT true.

From the graphs,

$$\frac{AB}{BC} = \frac{AC - BC}{BC}$$
$$= \frac{AC}{BC} - 1$$
$$= \frac{\log_a OC}{\log_b OC} - 1$$
$$= \frac{\log OC / \log a}{\log OC / \log b} - 1$$
$$= \frac{\log b - \log a}{\log a}$$
$$= \log_a \frac{b}{a}$$



 \therefore III is true.

33. D

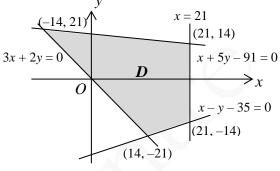
 $y = kx^{a}$ $\log_{4} y = \log_{4}(kx^{a})$ $= \log_{4} x^{a} + \log_{4}k$ $= a\log_{4} x + \log_{4}k$ Substitute (1, 2) into the equation, $2 = a(1) + \log_{4}k \quad \text{i.e.} \quad a + \log_{4}k = 2 \dots (1)$ Substitute (9, 6) into the equation, $6 = a(9) + \log_{4}k \quad \text{i.e.} \quad 9a + \log_{4}k = 6 \dots (2)$ (1) × 9 - (2), $8\log_{4}k = 12$ $k = 4^{\frac{3}{2}}$ = 8 <u>Alternatively</u> $\begin{cases}
\log_4 x = 1 \rightarrow x = 4 \\
\log_4 y = 2 \rightarrow y = 4^2 \\
\therefore 4^2 = k(4)^a \quad \text{i.e.} \quad k(4^a) = 4^2 \dots (1) \\
\log_4 x = 9 \rightarrow x = 4^9 \\
\log_4 y = 6 \rightarrow y = 4^6 \\
\therefore 4^6 = k(4^9)^a \quad \text{i.e.} \quad k(4^{9a}) = 4^6 \dots (2) \\
\text{From (1),} \\
[k(4^a)]^9 = (4^2)^9 \\
k^9(4^{9a}) = 4^{18} \dots (3) \\
(3) \div (2), \\
k^8 = 4^{12}
\end{cases}$

 $k = 4^{\frac{3}{2}} = 8$

Page 13 34. C

Draw the straight lines of x = 21, x - y - 35 = 0, x + 5y - 91 = 0 and 3x + 2y = 0 respectively. Shade the region *D*.

The points of intersections are (-14, 21), (14, -21), (21, -14), (21, 14). Let P = 5x + 6y + 234. P(-14, 21) = 5(-14) + 6(21) + 234 = 290 P(14, -21) = 5(14) + 6(-21) + 234 = 178 P(21, -14) = 5(21) + 6(-14) + 234 = 255 P(21, 14) = 5(21) + 6(14) + 234 = 423 \therefore The least value of 5x + 6y + 234 is 178.



35. B

Let $S(n) = 6n^2 - n$ and T(n) be the nth term of the sequence. Then, T(n) = S(n) - S(n - 1) $= 6n^2 - n - [6(n - 1)^2 - (n - 1)]$ = 12n - 7

When T(n) = 22 i.e. $12n - 7 = 22 \Rightarrow n = \frac{29}{12}$ which is not an integer.

 \therefore I is NOT true.
 Alternatively

 T(1) = 12(1) - 7 = 5 $S(1) = 6(1)^2 - 1 = 5$
 \therefore II is true.
 \therefore II is true.

 $\frac{T(2)}{T(1)} = \frac{12(2) - 7}{12(1) - 7} = \frac{17}{5}$

 $\frac{T(3)}{T(2)} = \frac{12(3)-7}{12(2)-7} = \frac{29}{17} \neq \frac{T(2)}{T(1)}$ $\therefore \quad \text{III is NOT true.}$

36. A

Note that *m* and *n* are the roots of the quadratic equation $2x^2 + 5x - 14 = 0$.

$$m + n = -\frac{5}{2} \text{ and } mn = -7$$
$$(m + 2)(n + 2)$$
$$= mn + 2(m + n) + 4$$
$$= -7 + 2(-\frac{5}{2}) + 4$$
$$= -8$$

37. D

$$\frac{2i^{12}+3i^{13}+4i^{14}+5i^{15}+6i^{16}}{1-i}$$

$$=\frac{2+3i+4(-1)+5(-i)+6}{1-i} \quad [Note: i^{4n} = 1, i^{4n+1} = i, i^{4n+2} = -1, i^{4n+3} = -i]$$

$$=\frac{4-2i}{1-i}$$

$$=\frac{4-2i}{1-i} \times \frac{1+i}{1+i}$$

$$=\frac{4-2i+4i-2i^{2}}{1+1}$$

$$=\frac{6+2i}{2}$$

$$= 3+i$$
∴ The real part of the complex number is 3.

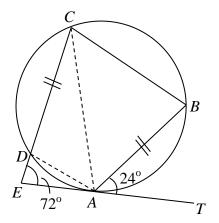
38. B

Page 14

 $6\cos^{2}x = \cos x + 5$ $6\cos^{2}x - \cos x - 5 = 0$ $(6\cos x + 5)(\cos x - 1) = 0$ $\cos x = 1 \text{ or } -\frac{5}{6}$ $x = 0^{\circ}, 146^{\circ} \text{ or } 214^{\circ}$ $\therefore \text{ The equation has 3 roots.}$

39. B

Join AC and AD. $\angle ACB = \angle BAT (\angle \text{ in alt. segment})$ $= 24^{\circ}$ $\widehat{CD} = \widehat{AB} \text{ (equal chords, equal arcs)}$ $\angle DAC = \angle ACB \text{ (arcs prop. to } \angle \text{s at } \bigcirc^{\text{ce}} \text{)}$ $= 24^{\circ}$ Let $\angle DAE = x$. Then, $\angle DCA = \angle DAE = x (\angle \text{ in alt. segment})$ $\angle AED + \angle DCA + \angle DAC + \angle DAE = 180^{\circ} (\angle \text{ sum of } \triangle)$ $72^{\circ} + x + 24^{\circ} + x = 180^{\circ}$ $x = 42^{\circ}$ $\angle ABC = \angle EAC (\angle \text{ in alt. segment})$ $= \angle DAC + \angle DAE$ $= 24^{\circ} + 42^{\circ}$ $= 66^{\circ}$

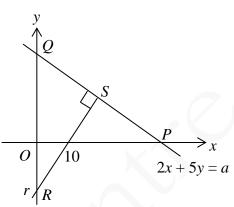


40. A

Let *S* be the foot of the perpendicular from *R* to *PQ*.

Note that the intersection of *OP* and *RS* is the orthocenter of $\triangle PQR$.

The slope of
$$PQ = -\frac{2}{5}$$
.
Let the y-coordinate of R be r.
The slope of $RS = -\frac{r}{10}$.
 $\therefore PQ \perp RS$
 $\therefore (-\frac{2}{5})(-\frac{r}{10}) = -1$

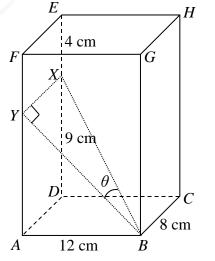


41. D

r = -25

Let *Y* be the projection of *X* on the plane *ABGF*. Then, $XY \perp YB$ and $\theta = \angle YBX$.

Note that XY = BC = 8 cm and YA = XD = 9 cm. $YB^2 = YA^2 + AB^2 = 9^2 + 12^2$ YB = 15 cm $XB^2 = YB^2 + XY^2$ $= 15^2 + 8^2$ XB = 17 cm $\therefore \cos \theta = \frac{YB}{XB} = \frac{15}{17}$



42. A

Number of teams formed

 $= C_3^{14} + C_3^{15} \\= 819$

43. C

John gets a number '6' in the following situations.

He gets '6' in the 1st throw. Probability = $\frac{1}{6}$ or He does not get '1' or '6' in the 1st throw and Mary does not get '1' or '6' in the 2nd throw and then he gets '6' in the 3rd throw. Probability = $\frac{4}{6} \times \frac{4}{6} \times \frac{1}{6}$ or He gets '6' in the 5th throw. Probability = $\frac{4}{6} \times \frac{4}{6} \times \frac{4}{6} \times \frac{4}{6} \times \frac{4}{6} \times \frac{1}{6}$ etc.

The required probability

$$= \frac{1}{6} + \frac{4}{6} \times \frac{4}{6} \times \frac{1}{6} + \frac{4}{6} \times \frac{4}{6} \times \frac{4}{6} \times \frac{4}{6} \times \frac{1}{6} + \dots \text{ (sum to infinity)}$$
$$= \frac{\frac{1}{6}}{1 - \left(\frac{4}{6}\right)^2}$$
$$= \frac{3}{10}$$

44. B

Let $\boldsymbol{\sigma}$ be the standard deviation of the test scores. Then,

 $\frac{46-68}{\sigma} = -2.2$ $\sigma = 10$ Susan's standard score $= \frac{52-68}{10}$ = -1.6

45. A

- : All the terms are in an arithmetic sequence
- : Any consecutive 7 terms must have equal dispersion.
- . The required variance is also 9.